10W Audio Amplifier with Bass-boost | Schematic Diagrams


Schematic Diagrams

Useful schematic and wiring diagrams. ✔ ✔ Enjoy electronic circuits, let your idea comes to hardware

10W Audio Amplifier with Bass-boost

]]>

High Quality, very simple design

Circuit diagram:

10W Amplifier

Parts:

P1_________________22K Log.Potentiometer (Dual-gang for stereo)P2________________100K Log.Potentiometer (Dual-gang for stereo)R1________________820R 1/4W ResistorR2,R4,R8____________4K7 1/4W ResistorsR3________________500R 1/2W Trimmer CermetR5_________________82K 1/4W ResistorR6,R7______________47K 1/4W ResistorsR9_________________10R 1/2W ResistorR10__________________R22 4W Resistor (wirewound)C1,C8_____________470nF 63V Polyester CapacitorC2,C5_____________100µF 25V Electrolytic CapacitorsC3,C4_____________470µF 25V Electrolytic CapacitorsC6_________________47pF 63V Ceramic or Polystyrene CapacitorC7_________________10nF 63V Polyester CapacitorC9________________100nF 63V Polyester CapacitorD1______________1N4148 75V 150mA DiodeIC1_____________NE5532 Low noise Dual Op-ampQ1_______________BC547B 45V 100mA NPN TransistorQ2_______________BC557B 45V 100mA PNP TransistorQ3_______________TIP42A 60V 6A PNP TransistorQ4_______________TIP41A 60V 6A NPN TransistorJ1__________________RCA audio input socket

Power supply parts:

R11_________________1K5 1/4W ResistorC10,C11__________4700µF 25V Electrolytic CapacitorsD2________________100V 4A Diode bridgeD3________________5mm. Red LEDT1________________220V Primary, 12 + 12V Secondary 24-30VA Mains transformerPL1_______________Male Mains plugSW1_______________SPST Mains switch


Comments:

This design is based on the 18 Watt Audio Amplifier, and was developed mainly to satisfy the requests of correspondents unable to locate the TLE2141C chip. It uses the widespread NE5532 Dual IC but, obviously, its power output will be comprised in the 9.5 – 11.5W range, as the supply rails cannot exceed ±18V.
As amplifiers of this kind are frequently used to drive small loudspeaker cabinets, the bass frequency range is rather sacrificed. Therefore a bass-boost control was inserted in the feedback loop of the amplifier, in order to overcome this problem without quality losses. The bass lift curve can reach a maximum of +16.4dB @ 50Hz. In any case, even when the bass control is rotated fully counterclockwise, the amplifier frequency response shows a gentle raising curve: +0.8dB @ 400Hz, +4.7dB @ 100Hz and +6dB @ 50Hz (referred to 1KHz).

Notes:

  • Can be directly connected to CD players, tuners and tape recorders.
  • Schematic shows left channel only, but C3, C4, IC1 and the power supply are common to both channels.
  • Numbers in parentheses show IC1 right channel pin connections.
  • A log type for P2 will ensure a more linear regulation of bass-boost.
  • Do not exceed 18 + 18V supply.
  • Q3 and Q4 must be mounted on heatsink.
  • D1 must be in thermal contact with Q1.
  • Quiescent current (best measured with an Avo-meter in series with Q3 Emitter) is not critical.
  • Set the volume control to the minimum and R3 to its minimum resistance.
  • Power-on the circuit and adjust R3 to read a current drawing of about 20 to 25mA.
  • Wait about 15 minutes, watch if the current is varying and readjust if necessary.
  • A correct grounding is very important to eliminate hum and ground loops. Connect to the same point the ground sides of J1, P1, C2, C3 &C4. Connect C9 to the output ground.
  • Then connect separately the input and output grounds to the power supply ground.

Technical data:

Output power:
10 Watt RMS into 8 Ohm (1KHz sinewave)
Sensitivity:
115 to 180mV input for 10W output (depending on P2 control position)
Frequency response:
See Comments above
Total harmonic distortion @ 1KHz:
0.1W 0.009% 1W 0.004% 10W 0.005%
Total harmonic distortion @ 100Hz:
0.1W 0.009% 1W 0.007% 10W 0.012%
Total harmonic distortion @ 10KHz:
0.1W 0.056% 1W 0.01% 10W 0.018%
Total harmonic distortion @ 100Hz and full boost:
1W 0.015% 10W 0.03%
Max. bass-boost referred to 1KHz:
400Hz = +5dB; 200Hz = +7.3dB; 100Hz = +12dB; 50Hz = +16.4dB; 30Hz = +13.3dB
Unconditionally stable on capacitive loads

Most Wanted Diagrams:

]]>

Comments are currently closed.

Sponsored Link

    ]]>

Categories

Schematic Search

BatteryBlower motorBuickCadillacChevroletCigar LighterCircuit DiagramDodgeelectrical circuitElectrical SchematicElectrical SystemFordFuel PumpFuel Pump Relayfusefuse blockfuse boxFuse Holderfuse layoutfuse mapfuse panelGMCHeadlampHeaterHondaHornHorn RelayIgnition coilIgnition switchInstrument ClusterInstrument panelOldsmobilePontiacPower WindowRadioRelayschematic diagramStarter RelayStop LampStudebakerTurn SignalWiperWiring Diagrawiring diagramWiring Harnes

Schematic Diagrams

Powered by WordPress. Designed by SuperSidor. Schematic Diagram

Recent Posts